Modernization Thru Spares

Technology Revolution

Reduction in Electronic Parts

Military Market Share Decreasing

New Technology Replacing Old Technology Faster

Obsolete Technology

Impacts

- Redesign in EMD
- Configuration Management
- Parts
 Obsolesence

Solutions

- "Open System" Design
- Contractor Retains Configuration Control Responsibility
- **➤** Production
- Spares/ Replenishment
- Contractor Retains Design Authority
- Performance-Based Specification

Typical Program Evolution

MTS Leverages Portion of O&S Costs

The Modernization Challenge

The Opportunity

Force Modernization

Performance Based Requirements

Industry Proposals

- New Designs
- Common Processes

- → Design Innovation
- → Commercial Mfg Processes
- → Lower Product Cost
- → Lower Logistics
 Costs

- ✓ Performance Outcomes NOT Design Details
- ✓ Processes NOT Products
- **✓** What **NOT** How

Form, Fit, Function, Interfaces

The Modernization Process

Current Procurement Emphasis

Rebuys and Spares Procurements

- Progress in use of Performance Based Procurements
 - First: Focus on ACAT Is & IIs
 - Second: Focus on ACAT IIIs & IVs
- Current Focus: Reprocurements/spares
- Army took lead applied reform to reprocurements
- Many procurements still use Detail Design Package
- Limits modernization of parts/ components/subsystems

Performance Based Conversions

Modernization thru Spares Continuum:

- Requires:
 - Revisiting configuration management levels
 - Revisiting maintenance concepts
 - CLS considerations
 - Case-by-case business decision

MTS Challenge to Acquisition Strategies

- Acquisition Initiatives / Incentives
- Commercialization
- Technology Insertion (TI)
- VE / SMA-OSCR / Depot Maintenance Reliability Program
- Parts Obsolescence / DMSMS
- Sustainment Strategy
- Standards & Spec Reform
- TDP Strategies
- Design Criteria/Systems Engineering
- Cost as an Independent Variable (CAIV)

Acquisition Initiatives / Incentives

✓ Using acquisition inititives as incentives to achieve IMTS objective

- Develop performance based solicitations for spares
- Review RFP and contract clauses that encourage alternative proposals
- Consider privatization of weapon system -"Breakback"
- Explore bundling similar spares into single procurements
- Consider acquisition strategy best practices
 - Contractors retain design responsibility
 - Contractor logistics support
 - Shared cost savings

Cost Reduction Initiatives AN/ARC-210 V/UHF Communications System

Planned vs Actual Unit Price Reduction (FY94 Unit Price = 100%)

Reliability Growth MIL-SPEC vs ARC-210 RIW

- Significant unit acquisition cost reduction
- Significant Life Cycle Cost reduction due to substantially improved MTBF and reduced spares requirements
- Contractor maintains configuration control below the top-level
- Contractor maintains the commercial repair depot

Commercialization

- ✓ Gain insight and explore methods to emphasize the use of market research and acquisition of commercial items
- Develop processes to facilitate commercialization
- Explore methods to expand market research in spares/rebuys
- Identify barriers, environments, recommendations, processes and methodologies

Commercialization

JSTARS-Commercial Processor Circuit Card

LRIP Savings: \$1.2M **Commercial ICs**

- Technical Review
- Reliability Analysis
- Support Analysis
- Cost Comparison

Savings: \$50M

Challenge: Apply Commercialization to MTS

Technology Insertion (TI)

✓ Performance based procurement offers TI opportunities

- Develop methods to identify opportunities for horizontal technology integration:
 - across many end item rebuys
 - high value or high quantity spares procurements
- Develop methods to identify opportunities for vertical insertion using higher assemblies

Horizontal Technology Integration

PAC--2 LVPS with High Density Module Technology

High density module (commercial off-the-shelf plug-in component)

Old LVPS Concept

- High maintenance
- Outdated technology

New LVPS Concept

- Motherboard
- •Motherboard with HDMs
- Low voltage power supply with Heat Dissipater

- Higher reliability
- "Fix Forward" maintenance concept
- Less power consumption
- Standard modules for flexible configuration
- Incorporates state-of-the-art design "across-the-force"

VE / OSCR / PBD 714

- √ VE/OSCR/PBD 714 provide mechanisms for MTS implementation
- Identify MTS relationship to VE/SMA-OSCR/ PBD 714 programs
- Emphasize top-down, system-wide review <u>versus</u> narrow look at an individual part / component
- Apply MTS concept to "Depot Maintenance Reliability Program" (PBD 714)
 - improve system life cycle cost
 - decrease initial investment

Abrams Track System Improvement Program

Existing System: Track and Roadwheels

- Rubber primary failure mode
- One piece track (T156) life 736 miles
- Replaceable pad track (T158) life 2200 miles
- Roadwheel life 1400 miles

Potential New Track Design

- Reduce/eliminate rubber at roadwheel/track interface
- Retain ground pad for paved surface operation
- Consider alternative materials/sources
- Incorporate by planned issue of spares

Parts Obsolescence / DMSMS*

✓ System design changes due to obsolesence and DMSMS offers modernization opportunities

- Obsolesence is prevalent in all life cycle phases
- Explore obsolesence mitigation techniques (open architecture, other flexible design techniques) during weapon system upgrades and changes
- Consider how obsolesence redesigns can complement MTS
- Consider methods for dealing with decreasing manufacturing sources

PADS* Replacement

PADS

- Current System: AN/USQ-70
 - Aging system
 - Repair costs increasing
 - Obsolete technology
 - Not in production

PADS Replacement

- Proposed System: MAPS** Dynamic Reference Unit Hybrid, Control and Display Unit, Power Control Unit
 - Uses common elements fielded on Paladin and FIREFINDER radars
 - Accuracy exceeds requirement
 - Order of magnitude MTBF improvement (10,000 hours vs 250 hours)
 - Less field maintenance
 - Provides significant cost savings

^{*} PADS - Position and Azimuth Determining System

^{**} MAPS - Modular Azimuth Position System

Sustainment Strategy

- Logistics process changes can reduce life cycle costs and meet modernization objectives
- Identify sustainment considerations potentially affected by MTS
 - Provisioning levels
 - Existing supply inventory
 - Maintenance policy / planning
 - Contractor logistics support
 - Configuration management
- Consider PM role in MTS implementation
- Explore potential O&S cost savings

CH-47D Engine Upgrade

- "Buy Back" lost performance for Army heavy lift capability
- 712 Modification 714A
 - Incorporates Full Authority Digital Electronic Fuel Control
 - Replaces magnesium parts with aluminum/ stainless steel (reduced engine corrosion)
- 1150 engines to be converted
- Airframe modification required
- "New" engine warranty 2400 hours (time between overhauls)
- CAIV principles applied low risk

Standards & Specs Reform

- ✓ Performance based specifications provide roadmap for modernization
- Examine the processes used for the conversion of detailed specifications to MIL-PRFs and their relationship to MTS
- Identify methods to arrive at optimum configuration management and provisioning levels considering MTS
- Identify impacts to "requirements flow down" from system to subassembly levels
- Identify changes to government/contractor risk relationships and risk management approaches

Hercules Track Traction Improvement

- Innovative design to improve tow capability in degraded soil conditions
 - Focus on switching from an integral pad to a replaceable pad track
 - Traction enhancement expected through integration of metal cleats on track
- Characteristics:
 - Replace track pads with 2-inch cleat
 - Space cleats at specific intervals on track
 - Consider torsion system changes
 - Consider rear lock-out changes
 - Investigate ideal position of towing pintle
- Incorporate capability using existing "O" Level Team
- Traction modernization possible through spares and attrition

TDP Strategies

√ Use of detailed data packages limit modernization opportunities

- Rebuys and spares procurements should use performance-based solicitations
 - Use Detailed Design Packages to define form, fit, function and interface requirements
- Explore impacts and solutions for MIL SPEC conversion regarding:
 - Re-engineering
 - Requalification
 - Adjustment to logistics program
- Consider use of conversion modeling tools to assist decision making

TDP Strategies

Anti-Tank Weapon Systems
TOW-ITAS/IBAS

- EMD Program Phase
- LORA = 138 Spare Items
- Spares procurements use

Performance Specs

TDP Conversion Model

- Analyzes detailed design packages
- Considers 22 functional support templates
- Calculates:
 - Projected savings
 - -Break-even point
 - -Technical risk

Good Business Decisions

Design Criteria/Systems Engineering

✓ Effective design criteria will promote transfer of future technology into weapon systems

- Develop processes to incorporate MTS concepts in System Design processes
 - Open system architecture concepts
 - Systems engineering process elements
- Identify specification and statement of work provisions which:
 - Facilitate design modernization
 - Require consideration of MTS with logistics support analysis
- Identify methods to incorporate open systems architecture in MTS efforts

Design Criteria/Systems Engineering

Examples of Potential Applications

- -Reprogrammable missile electronics
 - Continue advancements in Autonomous Target Recognition
 - Imlement "new" algorithms in "old" missiles
- -Modular missile
 - Provide low cost upgrade to "wooden" rounds
 - In future, design for modular replacement
 - warhead / safe and arm / fuze
 - sensor / seeker
 - G&C / missile electronics
 - propulsion unit
- -Payoff
 - Improved performance at reduced cost
 - Fewer "old" missiles, ie, extended service life

Cost as an Independent Variable (CAIV)

✓ Cost and performance tradeoffs can reduce risk and enhance modernization

- Consider CAIV in selecting MTS candidates
- Explore use of IPTs to plan and execute cost-performance- schedule trade-offs
- Use of ownership simulation model can aid identification and selection of MTS candidates
- Review potential application of CAIV to aggregating spares buys at higher system levels

Cost as an Independent Variable (CAIV)

AN/ALQ-115(V) 2 Quickfix

- Quickfix system is not supportable due to obsolescence (Integrated Inertial Navigation System)
- Cost Analysis:

Investment	Quickfix Savings	Quickfix Cost Avoidance
\$4.7 M	\$17.0 M	\$6.3 M

Advanced

- Performance Analysis:
 - New Technology
 - Supportable
- Advanced Quickfix will replace Quickfix

Modernization by Mod Kit and Spares

Summary

- Modernization of Army Weapon Systems is essential . . .
 - Reduced procurement budgets
 - Aging weapon systems
- Modernization can be achieved by leveraging the O & S spares expenditures
- Numerous acquisition processes can contribute to achieving the modernization through spares objectives

Business Considerations

Modernization Through Spares

